Influence of model based iterative reconstruction algorithm on image quality of multiplanar reformations in reduced dose chest CT
نویسندگان
چکیده
BACKGROUND Model-based iterative reconstruction (MBIR) reduces image noise and improves image quality (IQ) but its influence on post-processing tools including maximal intensity projection (MIP) and minimal intensity projection (mIP) remains unknown. PURPOSE To evaluate the influence on IQ of MBIR on native, mIP, MIP axial and coronal reformats of reduced dose computed tomography (RD-CT) chest acquisition. MATERIAL AND METHODS Raw data of 50 patients, who underwent a standard dose CT (SD-CT) and a follow-up RD-CT with a CT dose index (CTDI) of 2-3 mGy, were reconstructed by MBIR and FBP. Native slices, 4-mm-thick MIP, and 3-mm-thick mIP axial and coronal reformats were generated. The relative IQ, subjective IQ, image noise, and number of artifacts were determined in order to compare different reconstructions of RD-CT with reference SD-CT. RESULTS The lowest noise was observed with MBIR. RD-CT reconstructed by MBIR exhibited the best relative and subjective IQ on coronal view regardless of the post-processing tool. MBIR generated the lowest rate of artefacts on coronal mIP/MIP reformats and the highest one on axial reformats, mainly represented by distortions and stairsteps artifacts. CONCLUSION The MBIR algorithm reduces image noise but generates more artifacts than FBP on axial mIP and MIP reformats of RD-CT. Conversely, it significantly improves IQ on coronal views, without increasing artifacts, regardless of the post-processing technique.
منابع مشابه
Fast System Matrix Calculation in CT Iterative Reconstruction
Introduction: Iterative reconstruction techniques provide better image quality and have the potential for reconstructions with lower imaging dose than classical methods in computed tomography (CT). However, the computational speed is major concern for these iterative techniques. The system matrix calculation during the forward- and back projection is one of the most time- cons...
متن کاملComparing IDREAM as an Iterative Reconstruction Algorithm against In Filtered Back Projection in Computed Tomography
Introduction: Recent studies of Computed Tomography (CT) conducted on patient dose reduction have recommended using an iterative reconstruction algorithm and mA (mili-Ampere) dose modulation. The current study aimed to evaluate Iterative Dose Reduction Algorithm (IDREAM) as an iterative reconstruction algorithm. Material and Methods: Two CT p...
متن کاملQuantitative Image Quality and Histogram-Based Evaluations of an Iterative Reconstruction Algorithm at Low-to-Ultralow Radiation Dose Levels: A Phantom Study in Chest CT
Objective To describe the quantitative image quality and histogram-based evaluation of an iterative reconstruction (IR) algorithm in chest computed tomography (CT) scans at low-to-ultralow CT radiation dose levels. Materials and Methods In an adult anthropomorphic phantom, chest CT scans were performed with 128-section dual-source CT at 70, 80, 100, 120, and 140 kVp, and the reference (3.4 mG...
متن کاملImage Quality in Children with Low-Radiation Chest CT Using Adaptive Statistical Iterative Reconstruction and Model-Based Iterative Reconstruction
OBJECTIVE To evaluate noise reduction and image quality improvement in low-radiation dose chest CT images in children using adaptive statistical iterative reconstruction (ASIR) and a full model-based iterative reconstruction (MBIR) algorithm. METHODS Forty-five children (age ranging from 28 days to 6 years, median of 1.8 years) who received low-dose chest CT scans were included. Age-dependent...
متن کاملRadiation dose reduction for CT lung cancer screening using ASIR and MBIR: a phantom study
The purpose of this study was to reduce the radiation dosage associated with computed tomography (CT) lung cancer screening while maintaining overall diagnostic image quality and definition of ground-glass opacities (GGOs). A lung screening phantom and a multipurpose chest phantom were used to quantitatively assess the performance of two iterative image reconstruction algorithms (adaptive stati...
متن کامل